Transcriptional comparisons between equine articular repair tissue, neonatal cartilage, cultured chondrocytes and mesenchymal stromal cells.
نویسندگان
چکیده
Human and equine cell transplant strategies for cartilage lesions usually result in scar tissue that is similar to what is produced naturally during the repair process. In this study, culture-expanded de-differentiated chondrocytes and primary bone marrow stromal cells at a pre-transplantation time-point were compared along with neonatal cartilage to repair tissue. Transcriptional profiling using a 9413-probeset equine-specific cDNA microarray and targeted real-time quantitative polymerase chain reaction validation were used to characterize relationships between these cell types and repair tissue both broadly and for individual cartilage biomarkers. The greatest divergence in expression was detected for transcripts encoding matrix proteins that typically define the differentiation status of normal articular cartilage and fibrocartilage repair tissue. Expression patterns and gene ontology analyses indicated that while the repair cells were more chondrogenic than bone marrow stromal cells and de-differentiated cultured chondrocytes, steady-state levels of transcripts encoding cartilage biomarkers were substantially lower than the amounts found in neonatal articular cartilage. By characterizing gene expression differences amongst these tissues, we present important targets to monitor when developing improvements to cartilage engineering therapies.
منابع مشابه
Mesenchymal stem cells can survive on the extracellular matrix-derived decellularized bovine articular cartilage scaffold
Objective (s): The scarcity of articular cartilage defect to repair due to absence of blood vessels and tissue engineering is one of the promising approaches for cartilage regeneration. The objective of this study was to prepare an extracellular matrix derived decellularized bovine articular cartilage scaffold and investigate its interactions with seeded rat bone marrow mesenchymal stem cells (...
متن کاملA Review Study: Using Stem Cells in Cartilage Regeneration and Tissue Engineering
Articular cartilage, the load-bearing tissue of the joint, has limited repair and regeneration ability. The scarcity of treatment modalities for large chondral defects has motivated researchers to engineer cartilage tissue constructs that can meet the functional demands of this tissue in vivo. Cartilage tissue engineering requires 3 components: cells, scaffold, and environment. ...
متن کاملComparison between Chondrogenic Markers of Differentiated Chondrocytes from Adipose Derived Stem Cells and Articular Chondrocytes In Vitro
Objective(s): Osteoarthritis is one of the most common diseases in middle-aged population in the world. Cartilage tissue engineering (TE) has been presented as an effort to introduce the best combination of cells, biomaterial scaffolds and stimulating growth factors to produce a cartilage tissue similar to the natural articular cartilage. In this study, the chondrogenic potential of adipose d...
متن کاملCo-Culture of Mesenchymal Stem Cells with Mature Chondrocytes: Producing Cartilage Construct for Application in Cartilage Regeneration
Background: Cell-based treatment approach using differentiated mesenchymal stem cells (MSCs) and mature chondrocytes has been considered as an advanced treatment for cartilage repair. We investigated the differentiated level of these two cell types that is crucial for their repair capacity for cartilage defect at a co-culture micro mass system. Methods: Passaged-2 MSCs isolated from the mouse b...
متن کاملCoculture of equine mesenchymal stem cells and mature equine articular chondrocytes results in improved chondrogenic differentiation of the stem cells.
Bone marrow derived mesenchymal stem cells (MSCs) can be used to repair articular cartilage defects, these cells should be properly stimulated so that they could differentiate morphologically and hold cellular synthetic features closer to maturely differentiated chondrocytes. It is well known that tissue specific environment plays an important role in cell fate determination. Once improved isol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Briefings in functional genomics
دوره 9 3 شماره
صفحات -
تاریخ انتشار 2010